Baruch Mathematics Placement Test
Math Placement Part 1 Practice Questions
1. Find the slope of the line that passes through the given points: \( (12,15) \) and \( (10, -3) \).
A) \(-9\) B) \(\frac{6}{11}\) C) \(\frac{1}{9}\) D) \(9\) E) \(\frac{-1}{9} \)
2. Find the slope of the line \(11x − 8y =88\).
A) \(\frac{11}{8}\) B) \(\frac{-11}{8}\) C) \(\frac{8}{11}\) D) \(\frac{-8}{11}\) E) \(11\)
3. Find an equation of the line with the slope \(m = \frac{1}{9}\) that passes through the point \( (−6,2) \). Write the equation in the form \( Ax + By = C\).
A) \(9x – 9y = -24\) B) \(x – 9y = -24\) C) \(x – 9y = 24\) D) \(x – 9y = -72\) E) \(x + 9y = -72\)
4. Compute \( f(-3) \) when \( f(x) = 4x^2 – 3x + 6\). Your answer should be an integer.
\(f(-3) = \)
5. Solve the system of equations:
\(y = 5x – 5\)
\(2y + 10x = -70\)
A) \( (-3, -20)\) B) \((-20, -3)\) C) \( (3, -20)\) D) No solutions E) Infinitely many solutions
6. Solve the system of equations:
\(x + 5y = -22\)
\(3x + 4y = -33\)
\(x = \)
\(y = \)
7. Simplify the expression \( \displaystyle\frac{(x^2)^4}{(2x)^3} \)
A) \(\displaystyle\frac{x^5}{8}\) B) \(\displaystyle\frac{x^5}{2}\) C) \(\displaystyle\frac{x^{11}}{8}\) D) \(\displaystyle\frac{x^3}{32}\) E) \(\displaystyle\frac{x^3}{8}\)
8. Perform the indicated operation and simplify: \( (26x + 5) – (-4x^2 – 13x + 5) \)
A) \(4x^2 – 39x\) B) \(4x^2 + 39x\) C) \(4x^2 + 39x – 10\) D) \(4x^2 + 13x + 10\) E) \(-4x^2 + 13x + 10\)
9. If you multiply \( (6x – 1)(x^2 – 2x + 1)\) and then simplify the result, one of the terms will be:
A) \(-13x^2\) B) \(-12x^2\) C) \(13x^2\) D) \(-11x^2\) E) \(-9x^2\)
10. Multiply \( (8z + 3)^2\).
A) \(64z^2 + 48z + 9\) B) \(8z^2 + 9\) C) \(8z^2 + 48z + 9\) D) \(16z^2 + 16z + 9\) E) \(64z + 9\)
11. Find \(x\) in the given triangle:
A) \(13\) B) \(\sqrt{104}\) C) \(7\) D) \(5\) E) \(12\)
12. If you factor the polynomials \(x^2 – 6x – 27\) and \(x^2 + 15x + 54\), which of the following is NOT a factor of either polynomial?
A) \(x + 1\) B) \(x + 9\) C) \(x – 9\) D) \(x + 3\) E) \(x + 6\)
13. If you factor \(7x^2 + 5x – 2\), one of the factors is:
A) \(7x – 1\) B) \(7x – 2\) C) \(x – 9\) D) \(x + 3\) E) \(x – 2\)
14. A boat can travel 48 miles with the current in 4 hours. The same boat requires 6 hours to travel the same distance against the current. How fast is the current?
A) 1 mph B) 2 mph C) 3 mph D) 4 mph E) 5 mph
15. Solve the equation \(x^2 – x = 72\). Both solutions are integers; one is positive, the other is negative.
Negative solution: \(x = \)
Positive solution: \(x = \)
16. Find the domain of the function \(\displaystyle f(x) = \frac{\sqrt{x}}{x – 4} \).
A) \((-\infty, 0) \cup (0,4) \) B) \([0, \infty)\) C) \([0,4) \cup (4, \infty) \) D) \((-\infty,4) \cup (4, \infty)\) E) \( [0,\infty) \cup (4, \infty)\)
17. Simplify the rational expression: \(\displaystyle\frac{2x + 2}{6x^2 + 16x + 10}\)
A) \(\displaystyle\frac{2x + 2}{6x^2 + 16x + 10}\) B) \(\displaystyle\frac{2x + 3}{3x + 2}\) C) \(\displaystyle\frac{1}{3x + 5}\) D) \(\displaystyle\frac{2x}{3x + 5}\) E) \(\displaystyle\frac{2}{3x + 5}\)
18. Find the product and simplify: \(\displaystyle\frac{x^2 + 10x + 24}{x^2 + 13x + 42}\cdot\frac{x^2 + 7x}{x^2 – 5x – 36}\)
A) \(\displaystyle\frac{1}{x – 9}\) B) \(\displaystyle\frac{x}{x – 9}\) C) \(\displaystyle\frac{x(x + 7)}{x – 9}\) D) \(\displaystyle\frac{x}{x^2 + 13x + 42}\) E) \(\displaystyle\frac{x + 8}{x – 9}\)
19. Solve the inequality for \(t\), writing your answer in interval notation: \(t^2 – 2t – 3 \leq 0\)
A) \([-1, 3]\) B) \( (-3, 1) \) C) \( [-3, 1]\) D) \( (-\infty, -1) \cup [3, \infty)\) E) \( (-\infty, -3] \cup [1, \infty) \)
20. Find the quotient and simplify: \(\displaystyle \frac{32x^4}{x^2 – 1} \div \frac{x^8}{(x + 1)^2}\)
A) \(\displaystyle\frac{32(x + 1)}{x^4(x – 1)}\) B) \(\displaystyle\frac{32x^{12}}{(x – 1)(x + 1)^3}\) C) \(\displaystyle\frac{4(x + 1)}{x^4(x – 1)}\) D) \(\displaystyle\frac{32x^4(x + 1)}{(x – 1)}\) E) \(\displaystyle\frac{32x^{32}}{(x – 1)(x + 1)^3}\)
21. Simplify: \(\displaystyle\frac{6x + 2}{x^2 + 13x + 40} – \frac{5x – 6}{x^2 + 13x + 40}\)
A) \(\displaystyle\frac{x – 8}{x^2 + 13x + 40}\) B) \(\displaystyle\frac{1}{x^2 + 13x + 40}\) C) \(\displaystyle\frac{1}{x + 8}\) D) \(\displaystyle\frac{x – 4}{x^2 + 13x + 40}\) E) \(\displaystyle\frac{1}{x + 5}\)
22. Solve: \(x^2 + 8x + 9 = 0 \)
A) \(x = -4\) or \(x = 4\) B) \(x = 4\) only C) \(x = -7\) or \(x = -1\) D) \(x = -4 + \sqrt{7}\) only E) \(x = -4 + \sqrt{7}\) or \(x = -4 – \sqrt{7}\)
23. Simplify: \(\displaystyle\frac{2}{x} + \frac{9}{x – 6}\)
A) \(\displaystyle\frac{11x – 12}{x(x – 6)}\) B) \(\displaystyle\frac{12x – 11}{x(x – 6)}\) C) \(\displaystyle\frac{11}{x(x – 6)}\) D) \(\displaystyle\frac{2x – 3}{x(x – 6)}\) E) \(\displaystyle\frac{9x – 12}{x(x – 6)}\)
24. Solve the equation: \(\displaystyle1 + \frac{1}{x} = \frac{72}{x^2} \)
A) \(\displaystyle x = 8, -9\) B) \(\displaystyle x = -8, 9\) C) \(\displaystyle x = \frac{-1}{8}, \frac{1}{9}\) D) \(\displaystyle x = 8, 9\) E) \(\displaystyle x = \frac{-1}{8}, \frac{-1}{9}\)
25. Simplify: \(\displaystyle\frac{4 + \frac{2}{x}}{\frac{x}{3} + \frac{1}{6}}\)
A) \(\displaystyle\frac{x}{6}\) B) \(\displaystyle\frac{x}{12}\) C) \(\displaystyle\frac{12}{x}\) D) \(\displaystyle 12\) E) \(\displaystyle\frac{4x + 2}{2x + 3}\)
26. Solve for \(x\): \(\sqrt{30x + 15} = x + 8\)
A) \(x = 0\) only B) \(x = 7\) only C) \(x = 7\) and \(x = 1\) D) \(x = 7\) and \(x = -7\) E) No real solution
27. Which of the following is equal to \(243^{4/5}\)?
A) \(81\) B) \(6561\) C) \(2187\) D) \(128\) E) \(162\)
28. If \(x\) is a positive real number, which of the following is equal to \(\sqrt{5x^3}\cdot\sqrt{5x^5}\)?
A) \(\sqrt{25x^{15}}\) B) \(5x^4\) C) \(\sqrt{5x^4}\) D) \(x^4\sqrt{10}\) E) \(5\sqrt{x^{15}}\)
29. Simplify \(2\sqrt{5} – 9\sqrt{45}\).
A) \(25\sqrt{5}\) B) \(11\sqrt{50}\) C) \(11\sqrt{5}\) D) \(-25\sqrt{5}\) E) \(6\sqrt{5}\)
30. Multiply and then simplify if possible: \( (\sqrt{13} + 2)\cdot (\sqrt{13} – 2)\)
A) \(17\) B) \(9 + 2\sqrt{13}\) C) \(11\) D) \(9\) E) \(9 – 2\sqrt{13}\)
Math Placement Part 2 Practice Questions
31. Of the following numbers, which is the greatest?
A) \(\cos(0)\) B) \(\cos(\frac{\pi}{6})\) C) \(\cos(\frac{\pi}{4})\) D) \(\cos(\frac{\pi}{2})\) E) \(\cos(\pi)\)
32. In the right triangle shown below, what is the value of \(\tan \theta\)?
A) \(x\) B) \(x\sqrt{x^2 – 1}\) C) \(x^2 + 1\) D) \(\frac{1}{2}(x^2 – 1)\) E) \(\sqrt{x^2 – 1}\)
33. If \(7^{2x} = 3\), then \(x = \)
A) \(\frac{3}{14}\) B) \(\frac{7}{6}\) C) \(\frac{1}{2}\log_3(7)\) D) \(\frac{1}{2}\log_7(3)\) E) \(3\log_7(\frac{1}{2})\)
34. Which of the following is NOT equal to \(\sin(20^{\circ})\)?
A) \(\cos(70^{\circ})\) B) \(\sin(160^{\circ})\) C) \(\sin(380^{\circ})\) D) \(\sin(-20^{\circ})\) E) \(\sin(-340^{\circ})\)
35. The expression \(\frac{1}{2}\ln(4x^6) – 2\ln(x^3)\) is equal to
A) \(\ln(2x^6 – 2x^3)\) B) \( \ln(2x^3 + x^6)\) C) \(\ln(2x^3)\) D) \(\ln (\frac{2}{x^3})\) E) \(-\frac{3}{2}\ln(4x^3)\)
36. Find the exact value of \(\displaystyle\sin(\frac{23\pi}{6})\).
A) \(\displaystyle\frac{1}{2}\) B) \(\displaystyle\frac{-1}{2}\) C) \\displaystyle\frac{-\sqrt{3}}{2}\) D) \(\displaystyle\frac{\sqrt{3}}{2}\) E) \(\displaystyle 1\)
37. Evaluate \(\displaystyle\log_4 \frac{1}{\sqrt{8}}\). Give your answer as reduced fraction.
\(\displaystyle\log_4 \frac{1}{\sqrt{8}} =\)
38. Which of the following is equal to \(\sin \theta \tan \theta + \cos \theta\)?
A) \(\tan \theta\) B) \(\sin \theta\) C) \(\sec \theta\) D) \(\csc \theta\) E) \(\cot \theta\)
39. What is the radian measure of a \(10^{\circ}\) angle?
A) \(\displaystyle\frac{\pi}{8}\) B) \(\displaystyle\frac{\pi}{10}\) C) \(\displaystyle\frac{\pi}{18}\) D) \(\displaystyle\frac{\pi}{20}\) E) \(\displaystyle\frac{\pi}{36}\)
40. If \(\displaystyle f(x) = \frac{2}{x}\), simplify \(\displaystyle \frac{f(1 + h) – f(1)}{h}\) for \(h \neq 0\).
A) \(\displaystyle \frac{2}{h + 1}\) B) \(\displaystyle \frac{-2}{h + 1}\) C) \(\displaystyle \frac{2}{h^2 + h}\) D) \(\displaystyle \frac{1}{h^2 + h}\) E) \(\displaystyle \frac{2h}{h + 1}\)
41. A town has an initial population of 300. The population is expected to double every 4 years. Which of the following equations gives the expected population, \(p\), in the town after \(t\) years?
A) \(p = 2(300^{t/4})\) B) \(p = 300(2^{4t})\) C) \(p = 300(2^{t/4})\) D) \(p = 300(4^{2t})\) E) \(p = 300e^{4t}\)
42. Suppose that the world’s oil reserves at time \(t = 1\) are 1980 billion barrels, and that these reserves are decreasing at a constant rate. If the reserves at time \(t = 3\) are projected to be 1920 billion barrels, at what time should the reserves be 1710 billion barrels? Your answer should be an integer.
\(t = \)
43. Simplify \(\displaystyle\frac{x – 3}{\sqrt{x} + \sqrt{3}}\) so that no radicals appear in the denominator. (Assume that \(x \geq 0\).)
A) \(\displaystyle\sqrt{x} + \sqrt{3}\) B) \(\displaystyle\sqrt{x} – \sqrt{3}\) C) \(\displaystyle\frac{\sqrt{x} – \sqrt{3}}{x + 3}\) D) \(\displaystyle\frac{\sqrt{x} + \sqrt{3}}{x + 3}\) E) \(\displaystyle\frac{\sqrt{x} – \sqrt{3}}{x – 3}\)
44. Solve for \(x\): \(\log_2(x) + \log_2(x – 7) = 3\)
A) \(x = 1\) and \(x = 8\) B) \(x = -1\) only C) \(x = 8\) only D) \(x = 3\) and \(x = 4\) E) \(x = -1\) and \(x = 8\)
45. If \(\displaystyle \cot \theta = -\sqrt{7}\) and \(\theta\) lies in quadrant IV, compute \(\displaystyle \sin \theta\).
A) \(\displaystyle \frac{1}{\sqrt{8}}\) B) \(\displaystyle \sqrt{7}\) C) \(\displaystyle \frac{1}{\sqrt{7}}\) D) \(\displaystyle \frac{-1}{\sqrt{8}}\) E) \(\displaystyle \frac{-\sqrt{7}}{\sqrt{8}}\)
Part 1 Solutions
1. D
2. A
3. B
4. 51
5. A
6. x = -7, y = -3
7. A
8. B
9. A
10. A
11. D
12. A
13. B
14. B
15. Negative solution: x = -8; Positive solution: x = 9
16. C
17. C
18. B
19. A
20. A
21. E
22. E
23. A
24. A
25. C
26. B
27. A
28. B
29. D
30. D
Part 2 Solutions
31. A
32. E
33. D
34. D
35. D
36. B
37. \(\displaystyle \frac{-3}{4}\)
38. C
39. C
40. B
41. C
42. t = 10
43. B
44. C
45. D